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ABSTRACT
On-demand taxi-calling platforms often ignore the social engage-

ment of individual drivers. The lack of social incentives impairs

the work enthusiasms of drivers and will affect the quality of ser-

vice. In this paper, we propose to form teams among drivers to

promote participation. A team consists of a leader and multiple

members, which acts as the basis for various group-based incen-

tives such as competition. We define the Recommendation-based

Team Formation (RTF) problem to form as many teams as possible

while accounting for the choices of drivers. The RTF problem is

challenging. It needs both accurate recommendation and coordina-

tion among recommendations, since each driver can be in at most

one team. To solve the RTF problem, we devise a Recommendation-

Matrix-Based Framework (RMBF). It first estimates the acceptance

probability of recommendations and then derives a recommenda-

tion matrix to maximize the number of formed teams from a global

view. We conduct trace-driven simulations using real data covering

over 64,000 drivers and deploy our solution on a large on-demand

taxi-calling platform for online evaluations. Experimental results

show that RMBF outperforms the greedy-based strategy by forming

up to 20% and 12.4% teams in trace-driven simulations and online

evaluations, and the drivers who form teams and are involved in

the competition have more service time, number of finished orders

and income.
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1 INTRODUCTION
Attracting and motivating drivers is essential for the success of

on-demand taxi-calling platforms such as Didi Chuxing
1
, Uber

2

and Grab
3
. Many platforms design dynamic pricing strategies [19]

to attract drivers. Consequently, many platforms such as Uber man-

aged to increase the number of monthly active drivers from 50, 000

in January 2014 to over 150, 000 in January 2015 [7].

Although momentary incentives have been widely applied in

on-demand taxi-calling platforms, social engagement is largely

overlooked in these platforms. Among the large numbers of drivers

registered, many of them feel unmotivated working as individuals,

and decide to quit after a period of time. Some studies find that

only 4% of the drivers will remain on Uber after one year
4
.

Rather than further designing incentive mechanisms at the indi-
vidual level [12, 24, 27], we propose to team up the drivers, where

various group-based incentives can be applied. We are inspired by

the recent findings that grouping promotes participation in crowd-

based applications [1]. To explore the potential of grouping for

taxi-calling services, we conduct a survey among DiDi Chuxing

drivers. According to the results, 15% drivers formed spontaneous

groups (see Fig. 1a). We find that drivers affiliated to at least one

self-organized group tend to remain in service for a longer time,

complete more taxi orders and earn more income than those not in

any group (see Fig. 1b). The results are consistent with the findings

in [1].

Inspired by these findings, we propose to form teams among taxi

drivers. A team is a group of drivers with one leader and multiple

members. It is envisioned to promote collaboration and coordina-

tion, and serves as the basis for group-based incentive mechanisms

such as gamification [22] and competition [4]. For instance, DiDi

chuxing has launched a team competition program where vari-

ous competitions are organized for its drivers to team up and the

teams that finish the highest number of taxi orders within a period

can earn extra rewards. These group-based incentive mechanisms

tend to motivate workers to produce better results and will even-

tually reduce the cost and increase the profits of crowdsourcing

platforms [6].

To realize the full potential of groups in incentive mechanism

design, taxi-calling platforms need to devise effective schemes to

1
https://en.wikipedia.org/wiki/Didi_Chuxing.

2
https://en.wikipedia.org/wiki/Uber_(company).

3
https://en.wikipedia.org/wiki/Grab_(application).

4
https://www.cnbc.com/2017/04/20/only-4-percent-of-uber-drivers-remain-after-a-

year-says-report.html
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Figure 1: Survey results amongDiDi Chuxing drivers on self-
organized groups and their performance.

form as many teams as possible. Self-organized groups are ineffec-

tive and only contribute to a small portion of the entire population

of drivers (see Fig. 1a). This is because drivers usually have limited

information about other drivers and thus can only team up locally

in an ad hoc manner. In contrast, the platform has access to diverse

information of drivers at a large scale and should be able to optimize

the team formation process from a holistic view.

In this paper, we propose a recommendation-based approach

to team formation for on-demand taxi-calling platforms. Given a

set of drivers registered as either leaders or members, the platform

recommends members to leaders in multiple rounds and the leaders

can decide whether to accept the recommendation or not. The goal

is to maximize the number of teams formed (i.e. groups of a leader
and a given number of members). We define team formation as a

recommendation problem rather than a combinational optimization

problem [13] because the recommendation-based approach endows

drivers’ choices and hence improves their sense of participation.

Our recommendation problem also differs from conventional

recommendation systems [16, 18, 20] in that we not only need

high accuracy per recommendation but also coordination among

recommendations to maximize the number of teams formed (since

each member can only join one team). Specifically, we want to

maximize the Team Formation Success Number (TFSN), i.e. the

number of teams, where each team is exactly of the required team

size (called a feasible team).

Formally, we define the Recommendation-based Team Formation

(RTF) problem and prove that it is NP-hard. To solve the RTF prob-

lem, we first propose a greedy algorithm based on mainstream rec-

ommendation system designs.We further devise a Recommendation-

Matrix-Based Framework (RMBF) to solve the problem from a holis-

tic view. RMBF first estimates the probability for each leader to

accept a recommended member. Afterwards it uses a recommenda-

tion matrix to optimize the TFSN in each round of recommenda-

tion, which takes both accuracy per recommendation and conflict

among recommendations into consideration, and derives globally

optimized results. We evaluate the performance of RMBF on real

data involving over 64,000 drivers collected by DiDi Chuxing, a

large on-demand taxi-calling platform in China. Trace-driven simu-

lations show that RMBF-based approaches can form up to 20% more

teams than greedy-based recommendation strategies. We also inte-

grate our methods into the group-based competition programs held

by the platform. Real-world online experiments show that RMBF

can help form up to 12.4% more teams than a greedy strategy.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose team

formation in on-demand taxi-calling platforms. It serves as

a basis to design group-based collaborative or competitive

incentive mechanisms for such platforms.

• We define team formation as a recommendation problem and

prove it is NP-hard.We then design a generic recommendation-

matrix-based framework (RMBF) to solve it approximately.

• We evaluate RMBF on a large-scale on-demand taxi-calling

platform using both trace-driven simulations and online eval-

uations. Experimental results show that RMBF outperforms

the greedy-based strategy by forming up to 20% and 12.4%

teams in trace-driven simulations and online evaluations.

2 RELATEDWORK
This section reviews related work in recommendation systems and

team formation in social networks.

2.1 Recommender Systems
Recommendation systems attempt to recommend the most suitable

items to users and have been widely applied in entertainment (rec-

ommendations for movies, music), e-commerce (recommendations

for consumers of products), etc. Commonly used recommendation

techniques include collaborative filtering (CF) [18], content based

(CB) [16] and knowledge based (KB) [20]. These techniques can be

further combined and improved. For example, Yu et al. [25] suggest
that CB and CF can be combined under a hierarchical Bayesian

framework. Shang et al. [9] use ANN to generate the personalized

recommendation. Xue et al. [23] present a technique where individ-
uals are grouped and the unrated items are predicted by use of the

users’ ratings in a group. Zhang et al. [26] develop a Fuzzy-based

recommender system which combines user-based and item-based

collaborative filtering techniques with fuzzy set techniques to make

the personalized recommendation. We refer interested readers to

[3] for a comprehensive overview of recommendation systems.
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Figure 2: An example of competition-based social mechanism built upon team formation.

Ourwork is inspired by the research on recommendation systems

and takes a recommendation based approach to team formation.

However, the proposed recommendation-based team formation

problem differs from traditional recommendation systems in two

folds. (i) The recommendations (i.e. members) in our problem are

correlated (i.e. each member can only be in one team). (ii) We

not only require accurate recommendation, but also coordination

among recommendations. Hence our problem is more challenging.

2.2 Team Formation in Social Networks
Team formation is one important problem in social networks. In this

thread of research, teams of experts with different skills are formed

to complete tasks requiring multiple skills. The goal is often to

find a qualified team with the minimal communication cost, which

is defined based on the social graph of the experts [2, 10, 13, 14].

Theodoros et al. [13] propose to use the diameter and the sum of

the weights of the minimum spanning tree of the team members’

social graph as the communication cost. Mehdi et al. [10] define the
communication cost as the sum of the shortest distances between

the members and the leader. Other goals such as workload balance

among members have also been considered [2, 14].

Our team formation problem differs from the existing literature

in two aspects. (i) The teams in our problem are formed as the

basis to design social-based incentives rather than to solve complex

tasks. Hence the members in our problem are homogeneous. (ii)
We aim to maximize the number of teams formed, while the goals

of above studies are mainly related with the team’s communication

cost defined based on the social networks.

3 PROBLEM STATEMENT
This section introduces team formation in on-demand taxi-calling

platforms (Sec. 3.1) and formally define the recommendation based

team formation problem (Sec. 3.2). Finally we analyze the hardness

of the problem in Sec. 3.3.

3.1 Preliminaries
To form teams on taxi-calling platforms, each driver first registers

as either a leader or a member. Each team consists of one leader and

multiple members. We distinguish leaders and members because

research in management shows that leadership can enhance the

effectiveness of the team [15]. We set only one leader for each

team because one leader can make the team formation succinct,

compared with no-leader or multi-leader situations. For ease of

management one member can join at most one team.

Teams formed on the platform can be used to implement var-

ious social incentive mechanisms such as competition [6]. Fig. 2

illustrates an example of competition-based mechanism built upon

teams. For fair competition, each team needs to be of equal size.

In the rest of this work, we will take competition (and thus equal

team sizes) as an example to define our problem and optimization

framework. Other social incentives also apply.

• Registration. The taxi-calling platform publishes informa-

tion about team-based competitions including the number

of each team. Drivers who are willing to participate in the

competitions register as leaders or members.

• Team Formation. Registered drivers form teams. It can

be achieved by leaders inviting members or the platform

recommending members to leaders.

• Competition. Feasible teams take part in different compe-

titions for monetary or other rewards.

Our work focuses on the team formation stage and proposes a

recommendation-based approach to maximize the number of feasi-

ble teams that can be formed.

3.2 Problem Formulation
Denote L = {l1, l2, ..., ł |L |} as the set of drivers who register as

leaders and M = {m1,m2, ...,m |M |} as the set of drivers who reg-

ister as members. Let S be the required size of each team, which

is predefined by the specific mechanisms. A team is feasible if its
size equals S . Further assume at most NR rounds are allowed to

recommend members to leaders whose teams are not feasible yet.

In each round, a certain number of members are recommended to

each leader. Denote lckl as the number of members a leader l still
lacks to form a feasible team. Hence the number of recommenda-

tion should not exceed lckl . Leaders decide whether to accept the

recommendations or not before the next round. Once a member
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Figure 3: An example of instance transformation.

is accepted, s/he will not be recommended to other leaders in the

subsequent rounds. If the same member is accepted by more than

one leader, the member will be allocated randomly. We define the

recommendation-based team formation problem (RTF) below.

Definition 1 (Recommendation-based Team Formation). Given
sets L andM , a budget NR on the rounds of recommendations and the
size of the feasible team S , the platform recommends drivers inM who
do not have a team to leaders in L whose current team size is smaller
than S in each round and observes the decisions of the leaders. The
goal is to maximize the number of feasible teams after NR rounds.

3.3 Hardness Analysis
We analyze the hardness of the RTF problem above by considering

a simplified version, where for all l ∈ L andm ∈ M , we know in

advance whether or not l will acceptm ifm is recommended to l .
Such simplified version of the RTF problem can be formulated as a

bipartite matching problem called Recommendation with Oracle

(RwO) as follows.

Definition 2 (Recommendation with Oracle). Give an un-
weighted bipartite graphG =< L,R, E > where L and R represent the
left and right nodes, respectively, and E is the set of edges between L
and R. For each l ∈ L, integer cl > 1 is the capacity of l , which is the
maximum number of nodes in R that can be matched to it. We say l
is exhausted if exactly cl nodes in R are assigned to it. The problem is
to give a matching between L and R to maximize the number of l ∈ L
whose capacity is exhausted.

We then analyze the hardness of the RwO problem.

Lemma 1. The RwO problem is NP-Hard.

Proof. We prove by reduction from the set packing problem [11].

In the set packing problem, we are given a list of sets S1, S2, · · · , Sn ,
and the problem is to answer whether there exists p sets among

them such that the p sets are mutually disjoint. Given an instance

of the set packing problem, we create a left node li for each Si and
a right node r j for each element sj in ∪

n
p=1Sp . There is an edge

between li and r j if sj ∈ Si . The capacity cli for li is set to |Si |.
Thus we get an instance of the decision version of RwO problem.

As the set packing problem is NP-Complete, the RwO problem is

NP-Hard. �

If the capacities of the nodes in L is a constant k (we call this the

k-RwO problem), it is still NP-Hard.

Lemma 2. The k-RwO problem is NP-Hard.

Proof. We prove by reduction from the k-set packing prob-

lem [8]. In the k-set packing problem, all the sets S1, S2, · · · , Sn
have the same size of k . The following proof is similar to that of

Lemma 1 and we omit it here. �

We have shown that the k-set packing problem can be reduced

to the k-RwO problem. Next we prove that the k-RwO problem can

be reduced to the (k + 1)-set packing problem.

Lemma 3. The k-RwO problem is no harder than the (k + 1)-set
packing problem.

Proof. The reduction is as follows. Given an instance of the

k-RwO problem, for each l ∈ L, denote nl as the number of l ’s
neighbor nodes. For the i-th k-combination of these nl neighbor
nodes, we create a node l i and add an edge between l i and each of

the nodes in the i-th combination. Then we create a dummy node

r ′ for R and add an edge between all the l i and r ′. Now we get an

instance of the (k+1)-set packing problem. Fig. 3 shows an example

of how to conduct the reduction. �

From Lemma. 1 to Lemma. 3 it can be inferred that the hardness

of RwO is similar to the set packing problem. Note that unless

P = NP the maximum k-set packing problem cannot be efficiently

approximated within a factor of Ω(lnk/k) [8]. The original RTF
problem is even harder than the RwO problem because it does not

know whether a leader will accept a recommendation or not. In the

next two sections, we propose two solutions to the RTF problem.

4 GREEDY-BASED BASELINE SOLUTION
This section presents a greedy based baseline solution (BL for short)

to the RTF problem.

Main Idea. To form as many feasible teams as possible, we first

identify the team leader l∗ with the smallest number of lacked



Figure 4: Recommendation-Matrix-Based Framework.

members (denoted by lckl ∗ ). Ties can be broken arbitrarily. Then

lckl ∗ drivers with the highest probabilities to be accepted are rec-

ommended to l∗.

Acceptance Probability Estimation.As with mainstream recom-

mendation systems, BL estimates the probability for each leader

to accept certain recommended member from historical data. Simi-

lar to other practical recommendation systems, the platform may

face the cold-start problem. BL solves the cold-start problem by

using the similarity between leaders and members for recommen-

dation before sufficient records on acceptance probability are col-

lected. Specifically, BL use age and hometown information to calcu-

late the similarity between leaders and members, i.e., Sim(l,m) =
αSimд(l,m)+(1−α)Simd (l,m), where Simд(l,m) = 1−|дl − дm |/G
and Simd (l,m) = 1 − (11(l,m) + 12(l,m) + 13(l,m))/3. дl and дm
are the ages of leader l and memberm, respectively.G is the largest

age difference among all leader-member pairs. 11(l,m), 12(l,m) and
13(l,m) indicate whether l andm have the same level 1, 2 and 3

addresses, respectively. The similarity metric proves successful in

other group-based behaviour analysis [1]. After collecting enough

data, a model on acceptance probability can be trained through

existing learning methods.

Algorithm 1: Baseline Algorithm
input :L,M
output :A recommendation between L andM

1 while ∃l ∈ L, l is not processed do
2 l∗ ← l with the minumum lckl ;

3 Rl ∗ ← set of lckl ∗ members inM who have the highest

probability to be accepted and have not been

recommended before;

4 Recommend Rl ∗ to l and mark l processed;

5 return {(l,Rl )|l ∈ L}.

Algorithm Sketch.Algorithm 1 shows the procedure of BL. While

there exists a leader l whose set of recommended members is not

determined (Line 1), we identify the number of members l lacks in
Line 2 and recommend l the members who are not recommended

before and have the highest probability to be accepted in Lines 3-4.

Summary. BL essentially takes a greedy strategy, since it preferen-

tially recommends members who are most likely to be accepted by

the leaders whose teams are easiest to be formed. Hence its opti-

mization is local. This motivates us to design a solution to optimize

TFSN from a global view.

5 RECOMMENDATION-MATRIX-BASED
FRAMEWORK (RMBF)

In this section, we introduce RMBF, a recommendation-matrix-

based framework to solve the RTF problem. The main advantage of

RMBF is that it both increases the accuracy of each recommenda-

tion and decreases the conflicts among recommendations, i.e. one
member is accepted by multiple leaders. Therefore RMBF is able to

maximize the number of feasible teams from a global view.

RMBF Overview. Fig. 4 shows the workflow of RMBF.

• Training. As with BL (Sec. 4) , RMBF first learns a model

to estimate the probability for each leader to accept certain

recommended member. Then a probability matrix P |M |× |L |
can be derived given the sets of registered membersM and

leaders L, where Pm,l ∈ [0, 1] indicates the probability of

accepting memberm by leader l .
• Optimization. Using P , RMBF then derives a recommenda-

tion matrix R |M |× |L | which globally optimizes the TFSN in

each recommendation round. R is a zero-one matrix where

Rm,l = 1 meansm is recommended to l and Rm,l = 0 means

m is not recommended.

Essential in RMBF is the optimization stage. The main challenge is

to evaluate the impact of a recommendationmatrixR on the number

of teams that can be formed. Then an operational objective can

be defined upon such evaluation metric and classical optimization

methods can be applied to find the optimized recommendations. We

propose a novel method to evaluate the impact of a recommendation

matrix on team formation as follows.

Metrics to Evaluate Recommendation Matrix. To assess the

impact of a recommendation matrix R on the number of teams that

can be formed, we derive the expected number of teams formed in

a round under R, P and {lckl |l ∈ L}.
We recommend at most lckl members to l in each round. Thus, if

the recommended number is less than lckl , l will not form a feasible

in this round. Thus we only consider the leaders who need exactly

lckl members to be recommended. If a memberm is recommended



to a leader l , the probability thatm is eventually in l ’s team is

Pr (l,m) =
1∑

r ′
1
=0

· · ·

1∑
r ′n=0

∏n
i=0[P

r ′i
l ′i ,m
(1 − Pl ′i ,m )

1−r ′i ]

1 +
∑n
i=1 r

′
i

(1)

where l ′i represents the leader who also receives the recommenda-

tion of memberm, and r ′i is the indicator for whether l
′
i accepts

m. 1 +
∑n
i=1 r

′
i is used to rescale the probability if more than one

leaders acceptm. n is the number of leaders (l excluded) thatm is

recommended to. r ′
0
is always 1, i.e. l acceptsm and l ′

0
is l . Thus we

loop i from 0 in the numerator to calculate the probability whether

m is accepted by different leaders.

Based on Eq. (1), the probability that l can form a feasible team

in this round can be calculated by

Pr (l) =

lckl∏
i=1

Pr (l,mi ). (2)

Then the expected number of feasible teams formed in this round

is

E(R, P) =
∑
l ∈L

Pr (l). (3)

With Eq. (3), now we can find an optimized R given P using

existing optimization methods. Note that the major complexity to

compute Eq. (3) is the calculation of Eq. (1). It can be computation-

prohibitive to calculate Eq. (1) if n, i.e., the number of leaders (l
excluded) whom is recommended to, is too large. Fortunately, to

ensure the fairness, all the members should have equal chance

to be recommended which limits the value of n. Generally, n is

approximately the required number of a feasible team S , which can

be smaller than 10 in practice.

Summary. RMBF is a generic framework to solve the RTF problem.

Central in RMBF is a metric to assess the impact of a recommenda-

tion matrix on the expected number of teams that can be formed.

As with BL, RMBF needs to calculate the acceptance probability

of recommendations. We experiment with multiple representative

methods and choose XGBoost for its simplicity and effectiveness

(Sec. 6.1). With the proposed metric to evaluate a recommendation

matrix, RMBF optimizes E(R, P) in each round of recommendation.

Many classical optimization methods can be applied to the optimiza-

tion. In this work, we choose genetic algorithms as the optimization

method via both simulation (Sec. 6.2) and real-world experiments

(Sec. 6.3).

6 EVALUATION
This section evaluates the performance of BL and RMBF. Because

estimating the acceptance probability of recommendations is the

cornerstone of both BL and RMBF, we first evaluate different models

for acceptance probability estimation and the effectiveness of dif-

ferent features in Sec. 6.1. As the cost of doing online evaluation is

very high, trace-driven simulation (in Sec. 6.2)via the data collected

from DiDi Chuxing is necessary, through which we can identify the

best candidates for online evaluation. Finally, we conduct online

evaluation on the DiDi Chuxing platform in Sec. 6.3 and discuss

the effect of our group-based incentive via competition in Sec. 6.4.
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Figure 5: AUC of the compared methods.
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Figure 6: F1-Score of the compared methods.

6.1 Acceptance Probability Estimation
Since both BL and RMBF need to estimate the acceptance probability

of drivers, in this part we explore models suited for acceptance

probability estimation.

Setup. We use data collected from group-based competition activ-

ities organized by DiDi Chuxing held in October, 2017 in Wuhan

and Hangzhou. The dataset contains information of leaders and

members, and the historical recommendation records. There are

1,705,374 records in total. Among them 5.24% are recommenda-

tions accepted by the leaders. To balance the positive and negative

samples, we conduct down-sampling, after which 178,714 samples

remain, and the proportion of positive samples is 50%. We use 70%

of the samples for training the acceptance estimation model and

the remaining 30% for testing.

We use the following features to estimate the acceptance proba-

bilities of leaders:

• Similarity Features: the similarity of the ages, and home-

towns of the leaders and members;

• Individual Features: hometown, gender and age of the

leaders, and members;

• Platform Features: average online time, average number

of finished orders in a day, and average weekly income of

the leaders and members.

Table 1 summarizes the features we use for acceptance probability

estimation.

To assess the importance of features, we calculate their mutual

information (MI). Table 2 shows the results. As is shown, features



Table 1: Description of features.

Type Feature

Similarity Features

The similarity of the ages of the leaders and members

The similarity of the hometowns of the leaders and members

Individual Features

Hometowns of the leaders

Gender of the leaders

Age of the leaders

Hometowns of the members

Gender of the members

Age of the members

Platform Features

The average online time of the leaders in a day

The average number of finished orders of the leaders in a day

The average weekly income of the leaders

The average online time of the members in a day

The average number of finished orders of the members in a day

The average weekly income of the members

Table 2: Mutual information of features.

Rank Feature MI

1 The similarity of the hometowns of the leaders and members 0.607175279

2 The similarity of the ages of the leaders and members 0.569887252

3 Age of the members 0.553651225

4 Hometowns of the members 0.354052674

5 Hometowns of the leaders 0.062810456

6 Age of the leaders 0.024951617

7 The average weekly income of the members 0.024767756

8 The average online time of the members in a day 0.024659155

9 The average number of finished orders of the members in a day 0.017719414

10 The average online time of the leaders in a day 0.013553273

11 The average weekly income of the leaders 0.009437473

12 The average number of finished orders of the leaders in a day 0.001606935

13 Gender of the leaders 0.001203234

14 Gender of the members 0.001123594

with the highest MI are (i) the similarity of hometown, (ii) the
similarity of age and (iii) the age of the members, which is aligned

with previous studies [1].

We compare five models for acceptance probability estimation:

Logistic Regression (LR), RandomForest, SVM, Gradient Boosted

Decision Tree (GBDT) and XGBoost.

Results. Fig. 5 and Fig. 6 show the AUC and F1-Score of the five

models using the three categories of features on acceptance proba-

bility estimation. XGBoost achieves the highest AUC and F1-Score

and will be used for BL and RMBF hereafter.

6.2 Offline Evaluation on Team Formation
This part evaluates the performance using trace-driven simulation

with data collected from DiDi Chuxing.

Setup. We collect the data from six team-based competitions or-

ganized by DiDi Chuxing, held in November, 2017 in Changshan

and Shenzhen, two cities in China. Fig. 7 shows the statistics of the

collected data sets. Specifically, it shows the number of drivers who

registered as leaders and members in each competitions and the

ratios between the number of members and leaders. The team size

of all the six competitions are seven. In others words, each feasible

team requires one leader and six members. There are over 41,400

drivers who participated in the six competitions. On average, there

are about 5,963 drivers who registered as member and 943 who

registered as leader, and the average ratio is about 6.32.

Compared Algorithms.We use the best model (i.e. XGBoost) to
obtain the acceptance probabilities for each round of recommenda-

tion in BL and RMBF. Since RMBF is a generic framework where

different optimization methods can be applied, we compare the

following optimization methods: Genetic Algorithm (GA) [5], Sim-

ulated Annealing (SA) [21] and Hill Climbing Algorithm (HC) [17].

The implement details of the above algorithms are as follows.

• GA. We first generate population (namely many recommen-

dation matrices) randomly. Each matrix of the population is

viewed as an individual. Then we perform crossover which
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Figure 7: Statistics of dataset for offline evaluation.
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Figure 8: Results of offline evaluation.

chooses rows from two individuals randomly. Next, we per-

form mutation where we randomly choose a row of an indi-

vidual and exchange a ‘0’ and a ‘1’. Last, we keep the indi-

viduals with the highest fitness according to Eq. (1), Eq. (2)

and Eq. (3) (selection step). Note that all the individuals will

satisfy the constraint that at most lckl members are recom-

mended to leader l . The crossover, mutation and selection

steps are performed iteratively until convergence or the iter-

ation number exceeds the threshold.

• HC. We first generate the recommendation matrix randomly.

Then with a probability we change ‘0’ to ‘1’ and ‘1’ to ‘0’ to

get a new recommendation matrix. We use Eq. (1), Eq. (2)

and Eq. (3) to evaluate the original matrix and the new one.

The better one is remained and a new matrix based on the

remained one is generatedwith a probability. The above steps

are performed iteratively until convergence or the iteration

number exceeds the threshold.

• SA. The implement of SA is similar with that of HC. The

difference is that each time a new matrix is generated, with

a probability we remain the matrix which is not the better

one.
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Figure 9: Results of online evaluation.
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Figure 10: Statistics of dataset for online evaluation.

After obtaining the recommendations, we simulate the decisions

of leaders to accept or reject the recommendations according to the

acceptance probabilities P .

Results. Fig. 8 plots the percentage of leaders with feasible teams

with the increase of recommendation rounds. We plots the results

of the first 20 rounds because (i) all the algorithms saturate in

the first 20 rounds; and (ii) in practice we may have very limited

budget for recommendation e.g. only 10 rounds in the group-based

competitions held by DiDi Chuxing (see Sec. 6.3) and thus 20 rounds

is enough for simulation. We observe that except Fig. 8b, after 20

rounds all the algorithms can help form feasible teams for all the

leaders. This is because during the simulation, the decisions of the

leaders are based on the estimated probability. Accordingly, given

sufficient chances (rounds) to recommend members, we can always

form feasible teams for all the leaders. In Fig. 8b, all the algorithms

fail to form teams for every leader. The reason is that the ratio

between the members and leaders for the Changsha-3 dataset is

lower than 6, while a feasible team needs 7 drivers in total (see

Fig. 7). Therefore in Changsha-3 dataset, some drivers are bound to

fail in team formation due to insufficient members.

Among the algorithms, the RMBF-based algorithms (namely

RMBF-GA, RMBF-SA and RMBF-HC) all perform better than BL.

Particularly, given the same rounds of recommendation, RMBF-GA

is able to form up to 20% more teams than BL. This is reasonable

as compared with BL, the RMBF-based algorithms can optimize

recommendations from a global view. RMBF-GA is better than

RMBF-SA and RMBF-HC, indicating that genetic algorithm based

optimization method may be more suitable for our problem.

6.3 Online Evaluation on Team Formation
In this part, we integrate our methods into the group-based com-

petition activities held by DiDi Chuxing platform to evaluate the

performance on team formation in the wild.

Setup. We integrate BL and RMBF-GA into DiDi Chuxing as the

member recommendation algorithms for three team-based competi-

tions held in December, 2017 in Changshan, Shenzhen and Wuhan,

three cities in China. We did not compare RMBF-HC and RMBF-SA

due to the high cost to organize competitions for online evalua-

tion. The statics of the three competitions are shown in Fig. 10.

Similar with that in Fig. 7, Fig. 10 also shows the number of drivers

who registered as leaders and members in each competitions and

the ratios between the number of members and leaders. The team

size of all the three competitions are seven. In others words, each

feasible team requires one leader and six members. There are over

23,300 drivers who participated in the six competitions. On average,

there are about 6,692 drivers who registered as member and 1,085

who registered as leader, and the average ratio is about 6.17. Upon

receiving the recommendations by our methods, real-world leaders

registered for the competitions decide whether to accept them or

not.

Results. Fig. 9 shows the results of team formation. Note that

limited by the cost of online evaluation, only ten rounds of rec-

ommendation are conducted. Overall RMBF-GA performs better

than BL in all the three competitions, which is aligned with the

trace-driven simulation results. After 10 rounds of recommenda-

tion, RMBF-GA manages to form 7.8% to 12.4% more teams than

BL. The only exception is Shenzhen-4 (Fig. 9b), where RMBF-GA

and BL performs similarly. This may be because in this dataset, the

ratio between the drivers registered as members and leaders is high

(7.24 in Fig. 10), which gives BL more choices when conducting its

greedy strategy.

Comparing the results of online evaluation and offline simulation

for the first 10 rounds, the results of online evaluation are worse

by about 10%. Specifically, in the simulations, if the ratio of the

members and the leaders is larger than 6, after 10 rounds almost

all the leaders can form teams using RMBF-based algorithms (see



Fig. 8 except Fig. 8b). In the online experiments, 88.8% leaders form

teams (see Fig. 9b). This is because during the offline simulation

we simulate whether the leaders will accept the recommended

members according to the acceptance probability matrix P , while
in the online evaluation the response of the leaders may differ from

P . This result indicates that it will increase the number of teams

formed by further improving the accuracy of acceptance probability

estimation.

6.4 Discussion
In the above subsections we focus mainly on the effectiveness of

our recommendations methods for team formation. However, the

ultimate goal is to stimulate the drivers through the group-based

incentive which is via competition in our paper.

During the online evaluation conducted in Changsha, Shenzhen

and Wuhan in December 2017, we also record other data generated

the competition to evaluate the effectiveness of our group-based

incentive via competition among different teams. We find that on

average, after participating in the competition and forming teams,

the service time, number of finished orders and income of drivers

have improved by 33.8%, 34.4% and 27.4%, respectively. This result

indicates that the group-based incentives are promising and can

be a constructive supplement for other incentives at the individual

level.

7 CONCLUSION
In this paper, we propose a Recommendation-based Team Formation

(RTF) problem to promote participation in on-demand taxi-calling

platforms. The aim is to form as many teams as possible while ac-

counting for the choices of drivers.We prove that the RTF problem is

NP-hard. To solve the RTF problem, we first propose a greedy-based

recommendation strategy. Then we design a Recommendation-

Matrix-Based Framework (RMBF). It first estimates the acceptance

probability of recommendations and then derives a recommenda-

tion matrix to maximize the number of formed teams from a global

view. We evaluate the performance of the proposed solutions via

trace-driven simulations using real data covering over 64,000 dri-

vers as well as real-world online evaluations on a large on-demand

taxi-calling platform. Experimental results show that RMBF can

form up to 20% and 12.4% teams in trace-driven simulations and

online evaluations than the greedy-based strategy. We also find

that after participating in the competition and forming teams, the

service time, number of finished orders and income of drivers have

improved obliviously, indicating the effectiveness of group-based

incentive. We envision our work as a generic and effective build-

ing block to design various group-based incentive mechanisms for

current and future on-demand transportation services.
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